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Abstract: High-order finite element methods (also known as spectral/hp element 
methods) using either the continuous Galerkin or discontinuous Galerkin formulation 
have reached a level of sophistication such that they are now commonly applied to a 
diverse set of real-life engineering problems. Visualization of computed results is often 
used as a means of understanding and evaluating the numerical approximation of the 
mathematical model, and it provides a means of “closing the loop” – that is, of critically 
evaluating the computational results for refinement of the model and/or numerics or for 
interpretation of the physical world.  Visualizations of high-order finite element results 
which do not respect the a priori knowledge of how the data were produced and which do 
not provide a quantification of the visual error produced undermine the scientific process 
just described.  The goals of this effort are to define, investigate, and address the 
technical obstacles inherent in visualization of data derived from high-order numerical 
methods and to develop algorithms and software solutions that can be employed by the 
high-order simulation community. 

 

Statement of Problem Studies 

The goals of this effort are to define, investigate, and address the technical obstacles 
inherent in visualization of data derived from high-order numerical methods and to 
develop algorithms and software solutions that can be employed by the high-order 
simulation community.            

 
Summary of Results 
 
In this section, we first present the motivating work (published in [R1] by one of the 
investigators) for our previous ARO grant and then provide a summary of results as a 
consequence of ARO funding.  To summarize – six peer-reviewed journal articles have 
been published or accepted for publication: four articles targeting the visualization 
community [J1, J2, J4, J5] and two targeting the computational mathematics community 
[J3, J6].  
 



 

 
• Isosurface Visualization 
 
Our initial work on high-order finite element visualization was motivated by the work of 
Nelson and Kirby [R1], in which they presented an algorithm for ray-casting high-order, 
spectral/hp elements.  Their method uses a world-space approximation of the 
composition of the coordinate transformation and the reference space basis functions. It 
assumes multi-linear mappings (linear element boundaries in world space), and includes 
a quantification of the approximation and root-finding error.  They show that the image-
space method compares favorably with marching cubes in compute time when the 
tolerances on surface position are sufficiently high. Figure 1 provides an example of the 
type of visualizations produced by their work. The marching cubes image (left) was 
generated by sampling the finite element volume on a rectilinear grid of spacing $h$, 
using a marching cubes algorithm to provide a tessellated isosurface, and rendering the 
triangular isosurface using ray-casting (since the marching cubes result is a triangular 
mesh, the ray-casting can be done exactly as done in [R2]).  For the marching cubes 
image presented, a grid spacing of h=0.015 (yielding 4,705,274 voxels) was used.  For 
the high-order ray-traced image (right), mapping inversion error of 10-8 and 11th order 
projected polynomials were used.  These parameters were chosen such that the 
spectral/hp element evaluation time and rendering time was nearly identical to generate 
the two images.  The root-mean-square error for the marching cubes image is 0.0158; the 
root-mean-square error for the ray-traced image is 3.5e-11. The images look very similar, 
however the root-mean-square error difference between the images is significant.  We 
should also point out that the file size for the marching cubes representation is over an 
order of magnitude larger than the high-order representation. 
 

 
 
Figure 1: Marching cubes image with h=0.015 corresponding to 4,705,274 voxels  (left) 
and ray-traced solution using 11th order projected polynomials (right) for isosurface of 
pressure at C = 0.0 chosen such that the spectral/hp element data evaluation and 
rendering time is nearly identical (on the order of 200 seconds). The root-mean-square 
error for the marching cubes image is 0.0158; the root-mean-square error for the ray-
traced image is 3.5e-11. 
 



 

Although the ray-casting methodology provided a “pixel exact” visualization of the 
isosurface, it did so in what is referred to as “image space”.  This implies that even after a 
researcher found the isosurface of interest which they wanted to examine, each rotation, 
translation or zoom into the image required approximately the same amount of rendering 
time as each pixel's color has to be recomputed. 
 
The classic way to attempt to solve this issue is to render things in “object space” – that 
is, to generate objects (triangles, for instance) on the isosurface so that once an isosurface 
is found and an object is created, its rendering can be done quickly.  In [J1] we proposed 
visualizing isosurfaces in high-order finite element datasets with a particle system as a 
means of solving this problem.  We presented a framework that allows particles to 
sample an isosurface in reference space, avoiding the costly inverse mapping of positions 
from world space when evaluating the basis functions. The distribution of particles across 
the reference space isosurface is controlled by geometric information from the world 
space isosurface, such as the surface gradient and curvature. The resulting particle 
distributions can be distributed evenly or adapted to accommodate world-space surface 
features.  This provides compact, efficient, and accurate isosurface representations of 
these challenging data sets.  In Figure 2 we present a visualization of an isosurface of 
pressure within an incompressible fluid flow field. 
 

 
Figure 2: An isosurface of a finite element fluid simulation pressure field sampled with a 
particle system. The color indicates the relative direction of the surface normal at the 
particle (blue indicates outward and red indicates inward). } 
 
When one employs objects to mark or denote an isosurface, one faces the challenge of 
knowing how many objects to use and how densely to pack them.  A sparse packing of 
the objects can miss critical features of the isosurface.  A dense packing can be very 
inefficient (especially when the density is much higher than is needed).   In [J2], we 
describe a method for constructing isosurface triangulations of sampled, volumetric, 
three-dimensional scalar fields that attempts to tackle this sampling density problem.  
The resulting meshes consist of triangles that are of consistently high quality, making 
them well suited for accurate interpolation of scalar and vector-valued quantities, as 
required for numerous applications in visualization and numerical simulation.  The 
proposed method does not rely on a local construction or adjustment of triangles as is 
done, for instance, in advancing wavefront or adaptive refinement methods. Instead, a 
system of dynamic particles optimally samples an implicit function such that the 



 

particles' relative positions can produce a topologically correct Delaunay triangulation. 
Thus, the proposed method relies on a global placement of triangle vertices.  The main 
contributions of this work was the integration of dynamic particles systems with surface 
sampling theory and PDE-based methods for controlling the local variability of particle 
densities, as well as detailing a practical method that accommodates Delaunay sampling 
requirements to generate sparse sets of points for the production of high-quality 
tessellations. In [J5] we extended this work to handle surfaces that come as a 
consequence of multi-material interfaces. 
 
• Streamline Integration 
 
A quick search of both the visualization and the application domain literature 
demonstrates that streamlines are a popular visualization tool, second only to isosurfaces. 
The bias toward using streamlines is in part explained by studies that show streamlines to 
be effective visual representations for elucidating the salient features of the vector fields 
[R3].  Furthermore, streamlines as a visual representation are appealing because they are 
applicable for both two-dimensional and three-dimensional fields [R4].  It was for this 
reason that we invested time considering how streamlining would be impacted by high-
order finite element data. 
 
Streamline integration is often accomplished through the application of ordinary 
differential equation (ODE) integrators such as predictor-corrector or Runge-Kutta 
schemes.  The foundation for the development of these schemes is the use of Taylor 
series for building numerical approximations of the solution of the ODE of interest. 
Taylor series can be further used to elucidate the error characteristics of the derived 
scheme.  All schemes employed for streamline integration that are built using such an 
approach exhibit error characteristics which are predicated on the smoothness of the field 
through which the streamline is being integrated. 
 
Low-order and high-order finite volume and finite element fields are among the most 
common types of fluid flow simulation datasets available. Streamlining is commonly 
applied to these datasets.  The property of these fields which challenges classic 
streamline integration using Taylor series based approximations is that finite volume 
fields are piecewise discontinuous and finite element fields are only C0 continuous.  
Hence one of the limiting factors of streamline accuracy and integration efficiency is the 
lack of smoothness at the inter-element level of finite volume and finite element data. 
 
Adaptive error control techniques are often used to ameliorate the challenge posed by 
inter-element discontinuities.  To paraphrase a classic work on the subject of solving 
ODEs with discontinuities [R5], one must (1) detect, (2) determine the order, size and 
location of, and (3) judiciously “pass over” discontinuities for effective error control.  
Such an approach has been effectively employed within the visualization community for 
overcoming the challenges posed by discontinuous data at the cost of increased number 
of evaluations of the field data.  The number of evaluations of the field increases 
drastically with every discontinuity that is encountered [R5]. Thus if one requires a 
particular error tolerance and employs such methods for error control when integrating a 



 

streamline through a finite volume or finite element dataset, a large amount of the 
computational work involved is due to handling inter-element discontinuities and not the 
intra-element integration. We demonstrate this in Figure 3 where one can see that the 
number of streamline sampling steps goes up drastically each time a streamline attempts 
to traverse over an element boundary. 
 

 
 
Figure 3: The center graph shows a streamline on an $L_2$ projected field integrated 
using RK-4/5. The left graph shows the streamline between t=0 and t=0.3 and the 
cumulative number of RK-4/5 steps (including rejects) required for integration. Vertical 
lines on this graph represent multiple rejected steps occurring when the streamline 
crosses element boundaries. The right graph shows the cumulative number of RK-4/5 
steps required for integration to t=2.0. 
 
As the root of the difficulties is the discontinuous nature of the data, one could speculate 
that if one were to filter the data in such a way that it was no longer discontinuous, 
streamline integration could then be made more efficient.  The caveat that arises when 
one is interested in simulation and visualization error control is how does one select a 
filter that does not destroy the formal accuracy of the simulation data through which the 
streamlines are to be integrated? Recent mathematical advances [R6, R7] have shown 
that such filters can be constructed for high-order finite element and discontinuous 
Galerkin (high-order finite volume) data on uniform quadrilateral and hexahedral meshes.  
These filters are such that they have the provable quality that they increase the level of 
smoothness of the field without destroying the accuracy in the case that the “true 
solution” that the simulation is approximating is smooth.  In fact, in many cases, these 
filters can increase the accuracy of the solution.  
 
As part of our work, we investigated the use of such filters applied to discontinuous data 
prior to streamline integration, and found that they can drastically improve the 
computational efficiency of the integration process.  We currently have two published 
papers on this topic [J3, J4] (one presenting this work to the visualization community, 
and one paper presenting new computational mathematics work which came as a 
consequence of this study).  We also have an accepted paper in which we have adapted 
this idea to be more computationally efficient [J6]. We proposed a new technique that 
uses a one-dimensional convolution kernel to introduce continuity between elements, and 
increase smoothness while not introducing additional error in the solution.  Furthermore, 
this one-dimensional implementation is the same regardless of the dimension of the 



 

simulation data.  This in turn will aid in accomplishing the goals of visualization of data 
over more complex geometries while still improving the smoothness of the field and not 
compromising the accuracy of the data. 
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